Hankel operators on the Dirichlet space
نویسندگان
چکیده
منابع مشابه
Hankel operators and invariant subspaces of the Dirichlet space
The Dirichlet space D is the space of all analytic functions f on the open unit disc D such that f ′ is square integrable with respect to two-dimensional Lebesgue measure. In this paper we prove that the invariant subspaces of the Dirichlet shift are in 1-1 correspondence with the kernels of the Dirichlet-Hankel operators. We then apply this result to obtain information about the invariant subs...
متن کاملHankel Operators on Hilbert Space
commonly known as Hilbert's matrix, determines a bounded linear operator on the Hilbert space of square summable complex sequences. Infinite matrices which possess a similar form to H, namely those that are 'one way infinite' and have identical entries in cross diagonals, are called Hankel matrices, and when these matrices determine bounded operators we have Hankel operators, the subject of thi...
متن کاملCompact Hankel Operators on the Hardy Space of the Polydisk
We show that a big Hankel operator on the standard Hardy space of the polydisk D, n > 1, cannot be compact unless it is the zero operator. We also show that this result can be generalized to certain Hankel operators defined on Hardy-Sobolev spaces of the polydisk.
متن کاملFinite Rank Intermediate Hankel Operators on the Bergman Space
In this paper we characterize the kernel of an intermediate Hankel operator on the Bergman space in terms of the inner divisors and obtain a characterization for finite rank intermediate Hankel operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2009
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2008.11.028